Approximation of functions in Hölder’s class and solution of nonlinear Lane–Emden differential equation by orthonormal Euler wavelets

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 33

This Paper With 22 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAO-15-35_014

تاریخ نمایه سازی: 22 آذر 1404

Abstract:

In this article, a method has been developed for the solution of a non-linear Lane-Emden differential equation based on orthonormal Euler wavelet series. By dilatation and translation of orthogonal Euler polynomials, the orthonormal Euler wavelets are constructed. The convergence analysis of the orthonormal Euler wavelet series is studied in the H¨older’s class. The orthonormal Euler wavelet approximations of solution functions of the non-linear Lane-Emden differential equation in H¨older’s class are determined by partial sums of their orthonormal Euler wavelet series. In concisely, two approximations E^{(۱)}_{۲^{k−۱},M}(f) and E^{(۲)}_{۲^{k−۱},M}(f)of solution functions of classes H^α_۲ [۰, ۱) and H^ϕ_۲[۰, ۱) by (۲^k, M)^{th} partial sums of their orthonormal Euler wavelet expansions have been estimated. There are several applications of non-linear differential equations, which include the non-linear Lane-Emden differential equations. The solution of the non-linear Lane-Emden differential equation obtained by the orthonormal Euler wavelets method is compared to its solution obtained by the ODE-۴۵ method. It has been shown that the solutions produced by the orthonormal Euler wavelets are more accurate than those produced by the ODE-۴۵ method. This is a result of the wavelet analysis research article.

Keywords:

Orthonormal Euler wavelet , H^α_۲[۰ , H^ϕ_۲[۰ , ۱) class , Approximation of function and nonlinear Lane–Emden differential equations

Authors

H.C. Yadav

Department of Mathematics, School of Basic Sciences, Galgotias University, Greater Noida, India.

A. Yadav

Department of Mathematics, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, India.

S. Lal

Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Alsalami, Z. Modeling of Optimal Fully Connected Deep Neural Network ...
  • Al-Shetwi, A. and Sujod, M. Modeling and simulation of photovoltaic ...
  • Bouchaala, F., Ali, M., Matsushima, J., Jouini, M., Mohamed, A. ...
  • Chui, C.K. An introduction to Wavelets (Wavelet Analysis and its ...
  • Debnath, L. Wavelet transforms and their applications, Birkh¨auser, Boston, ۲۰۰۲ ...
  • Doha, E.H., Abd-Elhameed, W.M. and Youssri, Y.H. New ultraspherical wavelets ...
  • Kharnoob, M.M., Carbajal, N.C., Chenet Zuta, M.E., Ali, E., Abdul-laev, ...
  • Kharnoob, M.M., Carbajal, N.C., Chenet Zuta, M.E., Ali, E., Abdul-laev, ...
  • Kharnoob, M.M., Hasan, F.F., Sharma, M.K., Zearah, S.A., Alsalamy, A., ...
  • Lal, S. and Kumar, S. CAS wavelet approximation of functions ...
  • Lal, S. and Patel, N. Chebyshev wavelet approximation of functions ...
  • Lal, S. and Yadav, H.C. Approximation of functions belonging to ...
  • Mahatekar, Y., Scindia, P.S. and Kumar, P. A new numerical ...
  • Meyer, Y. and Roques, S. Wavelets their post and their ...
  • Mukherjee, S., Roy, B. and Chaterjee, P.K. Solution of Lane–Emden ...
  • Titchmarsh, E.C. The theory of functions, (۲nd edn.), Oxford University ...
  • Tural Polat, S.N. and Turan Dincel, A. Euler wavelet method ...
  • Zygmund, A. Trigonometric series, Cambridge University Press, Cambridge, ۱۹۵۹ ...
  • نمایش کامل مراجع