DECIPHERING SIZE DISTRIBUTION OF AEROSOL PARTICLES BY APPLYING GENETIC ALGORITHM TO THE DATA OBTAINED FROM ELECTRICAL MOBILITY SPECTROMETER
Publish place: Iranian National Conference on Mechanical Engineering
Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 971
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCMII01_135
تاریخ نمایه سازی: 22 اردیبهشت 1393
Abstract:
Diffusion charging of sub-micron particles is a stochastic phenomenon. Since there is a probability that particles of the same diameter may obtain different number of elementary charges, it is difficult to estimate size distribution of aerosol particles from analysing Electrical Mobility Spectrometer (EMS) data. This work presents a new approach for obtaining size distribution of captured particles of known charge distribution. In our approach, data signals obtained from EMS, are assumed to be a superposition of the signals resulted from charges on particles belonging to different diameter classes and having different concentrations. A set of linear equations with unknown parameters (unknown concentrations) and constant values can represent this superposition. The constants are derived from the calibration of the EMS instrument, either analytically or experimentally. The unknown parameters are calculated via Genetic Algorithm (GA) because the number of unknowns exceeds the number of equations and because of unavoidable noises in the signals. For the proposed approach, a benchmark analytic replicate of EMS is used as a test. The estimated size distribution agrees well with delivered size distribution.
Keywords:
Authors
a shaygani
School of Engineering and Science, Sharif University of Technology, Kish, ۷۹۴۱۷۷۶۶۵۵,
m.s saidi
School of Mechanical Engineering, Sharif University of Technology, Tehran, ۱۱۱۵۵-۹۵۶۷,
m sani
School of Engineering and Science, Sharif University of Technology, Kish, ۷۹۴۱۷۷۶۶۵۵,
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :