Using a Genetic Algorithm, Integrated Preventive Maintenance Planning and Production Scheduling for a Single Machine
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 12
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TRANS-3-1_005
تاریخ نمایه سازی: 4 بهمن 1404
Abstract:
Although preventive maintenance and production scheduling are closely related, most industrial units plan them independently. Preventive maintenance is typically scheduled to maximize machine availability, whereas production scheduling aims to optimize customer satisfaction, often measured by minimizing total weighted expected completion time. This study addresses this gap by proposing integrated and realistic approaches to merge production scheduling and maintenance planning models. The proposed framework is applied to Rafsanjan Arvand Wheel Co. to evaluate its practicality and effectiveness on an industrial scale. Implementation results demonstrate not only the successful synchronization of production and maintenance activities but also substantial performance improvements. Specifically, the integrated strategy leads to a ۴۲% reduction in overall weighted completion time of client orders, significantly enhancing customer satisfaction. Detailed analyses highlight how aligning maintenance and production planning can optimize resource utilization, reduce operational conflicts, and improve service levels simultaneously. These findings suggest that industrial firms can achieve both operational efficiency and improved customer outcomes by adopting integrated scheduling approaches. The proposed model provides a robust decision-support tool for managers seeking to optimize complex production-maintenance interactions, offering a practical pathway toward more efficient and customer-focused industrial operations.
Keywords:
Authors
H. Vares
Department of MBA, Faculty of Management, University of Tehran, Tehran, Iran
M. Sabzehparvar
Department of Industrial Engineering, Islamic Azad University, Karaj Branch, Karaj, Iran
M. J. Bannazadeh
Department of MBA, Faculty of Management, University of Tehran, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :