Determination of Powder Factor for an Optimized Blast Pattern Design Using Artificial Neural Network (Case Study: Gol-e-Gohar Iron Ore Mine)
Publish place: 3rd Iranian Rock Mechanics Conference
Publish Year: 1386
نوع سند: مقاله کنفرانسی
زبان: English
View: 4,807
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IRMC03_172
تاریخ نمایه سازی: 15 بهمن 1385
Abstract:
Side-effects of bench blasting are including ground vibration, back break, fly rock, and having boulder, in which back break and the degree of rock
fragmentation (having boulder) have the most effects on the produc tion process costs. Expecting less back break and also a good degree of fragmentation can be used as two criteria to design an optimized blast pattern with an optimum powder factor used. In this paper, artificial neural network capable of modeling the behavior of complex nonlinear processes, adopting Radial Basis Functions (RBF) network was used to carry out the modeling and optimization. Two RBF networks, one accounting for back break prediction and the other considering for the prediction of
the degree of rock fragmentation were designed. The networks designed were validated against the data obtained through the field tests, carried out at Gol-e-Gohar iron ore mine of Sirjan-Iran. Different blast patterns for different geological conditions were designed and the blast pattern and relevant powder factor associated with less back break and a good degree of fragmentation was selected.
Keywords:
Authors
Karami
M.Sc, Mining Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran.
Mansouri
Assistant Professor of Mining Engineering, Mining Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran.
Ebrahimi
Assistant Professor of Mining Engineering, Mining Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
Nezamabadi
Assistant Professor of Electrical Engineering, Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :