Application of Artificial Neural Networks to the Prediction of TBM Penetration Rate in TBM-driven Golab Water Transfer Tunnel

Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,214

This Paper With 15 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICCAU01_2935

تاریخ نمایه سازی: 29 تیر 1393

Abstract:

Rate of penetration of a Tunnel Boring Machine (TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. This paper presents the results of a study into the application of an Artificial Neural Network (ANN) technique for modeling the penetration rate of tunnel boring machines. A database, including actual, measured TBM penetration rates, uniaxial compressive strengths of the rock, the point load strength index in the rock mass and, RPM and normal force designation was established. Data collected from Golab water conveyance tunnle. A four-layer ANN was found to be optimum, with an architecture of four neurons in the input layer, 13, 4 neurons in the first, second hidden layers, respectively, and one neuron in the output layer. The correlation coefficient determined for penetration rate predicted by the ANN was 0.91

Authors

Yasser Mobarra

M.Sc. Student of Geotechnical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran,

Alireza Hajian

Assistant Professor, Faculty of Nuclear Engineering and Fundamental Science, Najafabad Branch,Islamic Azad University, Isfahan, Iran

Mohammadali Rahgozar

Assistant Professor, Faculty of Transportation Engineering, University of Isfahan, Isfahan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Alber M. Prediction of penetration, utilization for hard rock TBMs. ...
  • Graham P C. Rock exploration for machine manufacturer, In: Proceedings ...
  • Farmer I W, Glossop N H. Mechanics of disccutter penetration. ...
  • Cassineli F, Cina S, Innaurato N, Mancini R, Sampaolo A. ...
  • O'Rourke J E, Spring J E, Coudray S V. Geotechnical ...
  • Rostami J. Development of a Force Estimation Model for Rock ...
  • Bruland A. Hard Rock Tunnel Boring [Ph.D. dissertation]. Trondheim: Norwegian ...
  • Cheema S. Development of a Rock Mass Boreability Index for ...
  • Grima M A, Bruines P A, Verhoef P N W. ...
  • Yagiz S. Development of Rock Fracture and Brittlenes Indices to ...
  • Yagiz S. Utilizing rock mass properties for predicting TBM performance ...
  • Gong Q M, Zhao J. Development of a rock mas ...
  • International Conference _ Civil Engineering Architecture & Urban Sustainable Development ...
  • Mikaeil R, Zare M, Sereshki F. Multifactorial fuzzy approach to ...
  • Blindheim G T. Boreability Predictions for Tunneling [Ph.D. dissertation]. Trondheim: ...
  • Bamford W F Rock test indices are being successfully correlated ...
  • Innaurato N, Mancini R, Rondena E, Zaninetti A. For casting ...
  • Rostami J, Ozdemir L. A new modl for performance prediction ...
  • Sundaram N M, Rafek A G, Komoo I. The influence ...
  • Bruland A. Hard Rock Tunnel Boring [Ph.D. dissertation]. Trondheim: Norwegian ...
  • Sapigni M, Berti M, Bethaz E, Busillo A, Cardone G. ...
  • Okubo S, Fukui K, Chen W. Expert system for applica ...
  • Benardos A G, Kaliampakos D C. Modeling TBM performance with ...
  • Khandelwal M, Roy M P, Singh P K. Application of ...
  • Menbrotra K, Mohan C K, Ranka S. Elements of Artificial ...
  • Shahin M, Jaksa M, Maier H. Artificial neural networks application ...
  • Hasanipak A. Exploratory Data Analysis. Tehran: University of Tehran Press, ...
  • Simpson P K. Artificial Neural System: Foundation, Paradigm, Application and ...
  • Tawadrous A S, Katsabanis P D. Prediction of surface crown ...
  • Oraee K, Salehzade H, Salehi B. Calculation of effi- ciency ...
  • E. Sharifi, "Engineering geological studies of Golab water transfer tunnel", ...
  • A. Tourgoli, "Report of the generalities of Golab water transfer ...
  • International Conference _ Civil Engineering Architecture & Urban Sustainable Development ...
  • A. Eftekhari, M. Tofighi, "Golab water transfer tunnel project engineering ...
  • نمایش کامل مراجع