Application of Artificial Neural Networks to the Prediction of TBM Penetration Rate in TBM-driven Golab Water Transfer Tunnel
Publish place: international conference on civil engineering, architecture and Urban Sustainable Development
Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,214
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCAU01_2935
تاریخ نمایه سازی: 29 تیر 1393
Abstract:
Rate of penetration of a Tunnel Boring Machine (TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. This paper presents the results of a study into the application of an Artificial Neural Network (ANN) technique for modeling the penetration rate of tunnel boring machines. A database, including actual, measured TBM penetration rates, uniaxial compressive strengths of the rock, the point load strength index in the rock mass and, RPM and normal force designation was established. Data collected from Golab water conveyance tunnle. A four-layer ANN was found to be optimum, with an architecture of four neurons in the input layer, 13, 4 neurons in the first, second hidden layers, respectively, and one neuron in the output layer. The correlation coefficient determined for penetration rate predicted by the ANN was 0.91
Keywords:
Authors
Yasser Mobarra
M.Sc. Student of Geotechnical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran,
Alireza Hajian
Assistant Professor, Faculty of Nuclear Engineering and Fundamental Science, Najafabad Branch,Islamic Azad University, Isfahan, Iran
Mohammadali Rahgozar
Assistant Professor, Faculty of Transportation Engineering, University of Isfahan, Isfahan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :