Face Recognition using Orthogonal Weighted Locally Linear Discriminant Embedding
Publish Year: 1391
Type: Conference paper
Language: English
View: 861
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
IPRIA01_101
Index date: 2 August 2014
Face Recognition using Orthogonal Weighted Locally Linear Discriminant Embedding abstract
In this paper an efficient feature extraction method called Orthogonal Weighted Locally Linear Discriminant Embedding (OWLLDE) is proposed for face recognition. TheOWLLDE algorithm is motivated by locally linear embedding (LLE) algorithm, modified maximizing margin criterion (MMMC) and cam weighted distance. In OWLLDE, the LLEalgorithm is modified based on the weighted distance measurement to select more suitable neighbors for each data. Inthis way, the performance of OWLLDE in feature extraction will be improved for deformed distributed data. Moreover,OWLLDE preserves the local geometry structure of the databased on modified LLE and also makes full use of class information to improve the discriminant ability by a vectortranslation and rescaling model. Finally to improve the recognition accuracy, we use Gram–Schmidt orthogonalization to obtain the orthogonal basis vectors. The results of experiments on ORL and YALE databases show the superior performance of OWLLDE.
Face Recognition using Orthogonal Weighted Locally Linear Discriminant Embedding Keywords:
cam weighted distanc , feature extraction , locally linear discriminant embedding , manifold learning
Face Recognition using Orthogonal Weighted Locally Linear Discriminant Embedding authors
Hadiseh Ghafari Mejlej
Department of Computer Engineering Shahid Bahonar University of Kerman Kerman, Iran
Majid Mohammadi
Department of Computer Engineering Shahid Bahonar University of Kerman Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :