A Recognition Approach Using Multilayer Perceptron and Keyboard Dynamics Patterns
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,053
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
IPRIA01_105
Index date: 2 August 2014
A Recognition Approach Using Multilayer Perceptron and Keyboard Dynamics Patterns abstract
Multilayer perceptron (MLP) with one hidden layer is one of the most common forms of artificial neural networks ever utilized. A well-trained MLP with proper number of nodesin its hidden layer is demonstrated to have efficient and robust performance on patterns with high orders. In this paper in orderto form an identification system, MLP is utilized as a classifier to distinguish keyboard dynamics patterns of several people. A variant number of neurons in the single hidden layer isinvestigated empirically to reach the optimum number. The optimum number of hidden layer neurons has been found to be44 and relevant equal error rate (EER) equal to 0.95% has been reported. The false acceptance rate (FAR) and false reject rate(FRR) for this number of neuron has been empirically evaluated equal to 0.49%and 19.51%respectively.
A Recognition Approach Using Multilayer Perceptron and Keyboard Dynamics Patterns Keywords:
Artificial neural network (ANN) , Multilayer perceptron (MLP) , Identification system , Keyboard dynamics , Back propagation (BP)
A Recognition Approach Using Multilayer Perceptron and Keyboard Dynamics Patterns authors
a Rezaei
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
s Mirzakuchaki
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :