3D Object Retrieval Using Elliptical Descriptor of Different 2D Views
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,292
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
IPRIA01_107
Index date: 2 August 2014
3D Object Retrieval Using Elliptical Descriptor of Different 2D Views abstract
In this paper, we propose a 3D object indexing and retrieval system using elliptical descriptor for a large number of 2D silhouette views. Each silhouette is modeled by one ex-ellipsetree using Nelder-Mead optimization algorithm. The main advantage of using a large number of views is to eliminate therotation effect of 3D objects in space. By capturing many views from uniformly distributed points of view, most especial visual properties of a 3D model are used for retrieving assignment. The task of retrieving the 3D model is considered as the geometric analysis procedure and comparison between the query and the3D model is converted to compute the Euclidean distance of elliptical descriptor, which is previously extracted for eachmodel. The proposed 3D model retrieval algorithm has been evaluated on SHREC-W and McGill 3D shape benchmarks. Experimental result and comparison with other earlier approaches show the effectiveness of the proposed 3D model retrieval method.
3D Object Retrieval Using Elliptical Descriptor of Different 2D Views Keywords:
3D Object Retrieval Using Elliptical Descriptor of Different 2D Views authors
Mohammad Ramezani
Computer Vision Res. Lab, Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
Hossein Ebrahimnezhad
Computer Vision Res. Lab, Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :