Join of Fuzzy Genetic approaches for Intrusion Detection An Efficient Intrusion Detection System Based on Fuzzy Genetic approaches

Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 762

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

TIAU01_810

تاریخ نمایه سازی: 14 شهریور 1393

Abstract:

One of the solutions for the security of the systems and computer networks is the formation of intrusion detection systems. In the design of these systems, the techniques of artificial intelligence such as neural network, data miningtechniques, expert systems, genetic algorithms and fuzzy systems are applied. The main aim is the design of thesystem that besides exact detection is with low error. The main aim of detection in these systems is their analyzer. Itseems that if the input of analyzer of the systems is language variables and final detection is done as fuzzy inference,the results of the analysis get better and an exact detection is done. In addition to reduction of error, it can present good information in the form of fuzzy rules to the security expert of the system. Genetic algorithms by flexible and prevalent searching ability can be applied for optimized learning of fuzzy system rule base. The current paper aimed to evaluate, design and implement fuzzy genetic intrusion detection system. The experiments and the results showed the considerable effect of using the proposed architecture on the improvement of detection. [Life Science Journal 2013;X(X): X-XX]. (ISSN: 1545-0740).

Authors

s.o Azarkasb

Faculty of Computer Engineering, Qazvin Branch Azad University, Tehran, Iran.