سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

بهبود کلاس بندی داده های نامتوازن با استفاده از ترکیب الگوریتم SMOTE و رقابت استعماری

Publish Year: 1393
Type: Conference paper
Language: Persian
View: 2,520

This Paper With 6 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

AIHE08_396

Index date: 4 November 2014

بهبود کلاس بندی داده های نامتوازن با استفاده از ترکیب الگوریتم SMOTE و رقابت استعماری abstract

در دنیای امروز مسئله دسته بندی داده های نامتوازن از اهمیت خاصی برخوردار است. دسته بندی این داده ها به گونه ای هست که ، کلاسی که از نظر دامنه کاربرد اهمیت زیادی دارد( کلاس اقلیت) شامل تعداد حالات کمتری نسبت به کلاسی است که از اهمیت خاصی برخوردار نیست ( کلاس اکثریت) بهمجموعه این داده ها داده های نامتوازن می گویند. روش های مختلفی برای دسته بندی این نوع داده ها ارائه شده است. در دسته بندی این داده ها می کوشیم تا تعداد حالات کلاس اقلیت را نسبت به کلاس اکثریت افزایش دهیم. در این مقاله، ما پیشنهاد می کنیم یک الگوریتم جدید و موثر بر کلاس بندی داده های 5 سال بیماران سرطانی که در این دیتاست خاصیت نامتوازن بودن وجود دارد. الگوریتم پیشنهادی ترکیبی از الگوریتم های SMOTE ، الگوریتم رقابت اسعتماری ICA و برخی از کلاسیفایرهای مشهور است و همچنین برای محاسبه کارای الگوریتم پیشنهادی از ارزیاب هایی مانند Sensitivity, Specificity , Accuracy,GMean استفاده شده است. نتایج نشان می دهد که ترکیب الگوریتم های SMOTE+ICA+C5 بهترین نتیجه را در کلاس بندی داده های نامتوازن دارد. پس این یک رویکرد موثر در کلاس بندی داده های نامتوازن است.

بهبود کلاس بندی داده های نامتوازن با استفاده از ترکیب الگوریتم SMOTE و رقابت استعماری Keywords:

الگوریتم رقابت استعماری , داده های نامتوازن , کلاس بندی داده های نامتوازن

بهبود کلاس بندی داده های نامتوازن با استفاده از ترکیب الگوریتم SMOTE و رقابت استعماری authors

عارف طهماسب

دانشجوی کارشناسی ارشد دانشگاه شهید باهنر

علی اکبر نیک نفس

استادیار دانشگاه شهید باهنر

حمید علی میروزیری

استادیار دانشگاه شهید باهنر

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
W.C. Yeh, W.W. Chang, Y.Y. Chung, A new hybrid approach ...
A.K. Mohanty, S. Sahoo, A. Pradhan, S.K. Lenka, Breast cancer ...
C omp uterScience and Technology 2 (3) (2011) 37-41 ...
World Health Organization, Quick Cancer Facts, from ...
C. DeSantis, R. Siegel, P. Bandi, A. Jemal, Breast cancer ...
Q. Gu, Z. Cai, L. Ziu, Classification of imbalanced data ...
C omputationand Intelligence, 5821, 2009, pp. 287- 296. ...
H. He, E.A. Garcia, Learning from Imbalanced Data, IEEE Transactions ...
Y. Chen, Learning Classifiers from Imbalanced, Only Positive and Unlabeled ...
N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: Synthetic ...
L. Pelayo, S. Dick, Applying novel resampling in: ...
strategies to software defect pre-diction, Proceedings of the Annual Meeting ...
A. Lazarevic, J. Srivastava, V. Kumar, Tutorial: data mining for ...
in:Proceeding _ Pacific-Asia Conference Knowledge Discovery and Data Mining, 2004. ...
SEER (2010) Surveillance, Epidemiology, and End Results (SEER) Program(www _ ...
In stitute, DCCPS , Surveillance Research Program, Cancer Statistics Branch, ...
K.Jeng Wang , B _ Mako nd, Applid Soft Computing, ...
نمایش کامل مراجع

مقاله فارسی "بهبود کلاس بندی داده های نامتوازن با استفاده از ترکیب الگوریتم SMOTE و رقابت استعماری" توسط عارف طهماسب، دانشجوی کارشناسی ارشد دانشگاه شهید باهنر؛ علی اکبر نیک نفس، استادیار دانشگاه شهید باهنر؛ حمید علی میروزیری، استادیار دانشگاه شهید باهنر نوشته شده و در سال 1393 پس از تایید کمیته علمی کنفرانس ملی علوم مهندسی، ایده های نو (۸) پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله الگوریتم رقابت استعماری، داده های نامتوازن، کلاس بندی داده های نامتوازن هستند. این مقاله در تاریخ 13 آبان 1393 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 2520 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که در دنیای امروز مسئله دسته بندی داده های نامتوازن از اهمیت خاصی برخوردار است. دسته بندی این داده ها به گونه ای هست که ، کلاسی که از نظر دامنه کاربرد اهمیت زیادی دارد( کلاس اقلیت) شامل تعداد حالات کمتری نسبت به کلاسی است که از اهمیت خاصی برخوردار نیست ( کلاس اکثریت) بهمجموعه این داده ها داده های نامتوازن ... . برای دانلود فایل کامل مقاله بهبود کلاس بندی داده های نامتوازن با استفاده از ترکیب الگوریتم SMOTE و رقابت استعماری با 6 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.