Wavelet Transform Applications in Reservoir Data Characterization
Publish place: 11th National Iranian Chemical Engineering Congress
Publish Year: 1385
Type: Conference paper
Language: English
View: 1,893
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
NICEC11_574
Index date: 24 April 2007
Wavelet Transform Applications in Reservoir Data Characterization abstract
The main goal of reservoir characterization is to estimate the spatial distribution of reservoir properties such as porosity, permeability, and oil saturation. For reservoir management the accurate estimation of reservoir properties is essential. One of the key ideas in reservoir characterization is data scaling up. The objective of the scaling up is to reduce the number of cells from the main models without losing the important flow behavior of the fine models. Wavelet analysis is a multi resolution framework and, thus, it is well suited for upscaling rock and flow properties in a multi scale heterogeneous reservoir. The large family of wavelets provides a flexible way to control the smoothness of the resulted upscaling properties but in this case all mother wavelets are not suitable. This paper addresses the problems of data analysis and scale change by introducing wavelet transform approach that is amenable to analysis and scaling of nonstationary data. This paper is the extension to the work of M.N.Panda et al. on Reservoir Property Estimation. For comparing the impact of mother wavelet shapes on output data, some another type of wavelet shapes are used on Panda’s data.
Wavelet Transform Applications in Reservoir Data Characterization Keywords:
Wavelet Transform Applications in Reservoir Data Characterization authors
Saeid Sadeghnejad
M.Sc of Reservoir Eng., Sharif University of Technology
Mahmoudreza Pishvaie
Department of Chemical & Petroleum Eng. Sharif University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :