Artificial Neural NetworkModeling of Guar Gum Apparent Viscosity

Publish Year: 1390
نوع سند: مقاله کنفرانسی
زبان: English
View: 758

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICHEC07_521

تاریخ نمایه سازی: 25 فروردین 1394

Abstract:

The precise determination of apparent viscosity of guar gum solutions will help the mud engineer to better evaluate its behavior under diverse conditions. Therefore, it is essential to find a way to determine apparent viscosity at different situations. In this study, two empirical models comparedto artificial neural network were applied to predict apparent viscosity values of guar gum solutions. At both empirical models, the apparent viscosity was considered as a function ofconcentration, temperature and shear rate. The results showed that the models have appropriateaccuracy to estimate the apparent viscosity of guar gum solutions, whereas the coefficient of determination (R2) for both models obtained 0.993. But, both models had the limitation of initial guess for determination of equation constants. Besides, to determine the apparent viscosity,artificial neural network was applied using multilayer perceptron (MLP) and Levenberg- Marquardt learning algorithm. The architecture of neural network was designed as 3:4:1, whereas3, 4 and 1 are representatives of input parameters, the optimum neuron numbers in hidden layerand output parameter which is the apparent viscosity, respectively. Two activation functions (logsig and tan-sig) were separately applied into hidden layer and finally the best function was selected. The whole data were divided into three parts including 70 % training (330 data), 15 %validation (69 data) and 15 % testing (69 data). In the end, R2 values of training (0.9993), validation (0.9959) and testing (0.9977) data were determined so that the best activation function (log-sig) was used in the hidden layer of neural network.

Authors

Meisam Mirarab Razi

Iran University of Science and Technology, Narmak, Tehran ۱۶۸۴۶-۱۳۱۱۴, Iran

Seyed Nezameddin Ashrafizadeh

Iran University of Science and Technology, Narmak, Tehran ۱۶۸۴۶-۱۳۱۱۴, Iran

Mohammad Mazidi

Iran University of Science and Technology, Narmak, Tehran ۱۶۸۴۶-۱۳۱۱۴, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • _ Rupinski1, Z.K. Brzozowski1, M. Uliasz, Study on the application ...
  • H. Simonides, G. Schuringa, A. Ghalambor, Role of Starch in ...
  • S. Kiranyaz, T. Ince, A. Yildirim, M. Gabbouja, Evolutionary artificial ...
  • I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, ...
  • M.E. Tagluk, M. Akin, N. Sezgin, Classification of sleep apnea ...
  • R.J. Kuo, P. Wu, C.P. Wang, An intelligent sales forecasting ...
  • G. Serpen, D.K. Tekkedil, M. Orra, Akno wledge-based artificial neural ...
  • F. Farrokhzad, A.J. Choobbasti, A. Barari, Liquefaction microzonation of Babol ...
  • L. Ozbakr, A. Baykasoglu, S. Kulluk, A soft computing-based approach ...
  • M.L. Koce, _ 6zdemirb, D. Imrenb, Prediction of the pH ...
  • M. Khashei, M. Bijari, An artificial neural network (p, d, ...
  • M. Vasudevan, B.P.C. Rao, B. Venkatraman, T. Jayakumar, B. Raj, ...
  • M. Khashei, S.R. Hejazi, M. Bijari, A new hybrid artificial ...
  • M.C. Grassi, A.M. Caricati, M. Intraligri, M. Buscema, P. Nencini, ...
  • H. El Kadi, Modeling the mechanical behavior of fib er-reinforced ...
  • C. Thodesen, F. Xiao, S. N. Amirkhanian, Modeling viscosity behavior ...
  • P. Rai, G.C. Majumdar, S. DasGupta, S. De, Modeling the ...
  • _ Internationt Chemical Engineering Congress & Exihibition Kish, Iran, 21-24 ...
  • Kish, Iran, 21-24 November, 2011 ...
  • Q.H. Phan, T. Uomoto, Prediction of rheological properties of mortar ...
  • T.F. Al-Fariss, S.M. Al-Zahrani, Rheological behaviour of some dilute polymer ...
  • Q. Liua, X. Cui, M.F. Abbod, S.J. Huang, Y.Y. Hand, ...
  • P.G. Benardos, G.C. Vosniakos, Optimizing feedforward artificial neural network architecture. ...
  • M.W. Gardner, S.R. Dorling, Artificial neural networks (the multilayer perceptron)- ...
  • _ Internationt Chemical Engineering Congress & Exihibition Kish, Iran, 21-24 ...
  • نمایش کامل مراجع