Optimal SVM Parameters Estimation Using Chaotic Accelerated Particle Swarm Optimization for Genetic Data Classification
Publish place: Third International Electronic Conference on Information Technology, Present and Future
Publish Year: 1393
نوع سند: مقاله کنفرانسی
زبان: English
View: 919
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITPF03_014
تاریخ نمایه سازی: 25 فروردین 1394
Abstract:
Microarray studies and gene expression analysis havereceived tremendous attention over the last few years and providemany promising paths toward the understanding of fundamentalquestions in biology and medicine. High throughput biological dataneed to be processed, analyzed, and interpreted to address problemsin life sciences. Feature selection (FS) and clustering are amongthe methods used in the statistical analysis of these data types.Support Vector Machine (SVM) is very popular and powerfulamong learning methods. In general, SVM has a wide range ofapplications in pattern recognition and nonlinear fitting. Kernelfunctions have an important role in classification capability ofSVM. In this study, at first, selection of appropriate and efficientfeatures is performed using Fisher ranking method consideringclassification power. After that, balancing is performed betweendifferent classes based on the removal of samples of the majorityclass, which are far from the decision boundary. Optimization ofSVM classifier parameters including penalty factor C and RadialBasis Function (RBF) parameter
Keywords:
Microarray , support vector machine , feature selection , Fisher ranking method , chaotic accelerated particle swarmoptimization
Authors
Maryam Yassi
Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Mohammad Hossein Moattar
Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :