Hybrid Fuzzy Inference System for Web RobotDetection
Publish place: The Second International Conference on Intelligent Information Networks and Complex Systems
Publish Year: 1393
Type: Conference paper
Language: English
View: 1,066
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
IINC02_001
Index date: 14 April 2015
Hybrid Fuzzy Inference System for Web RobotDetection abstract
Nowadays, due to the dramatic expansion of theInternet, in various spheres, and dependence on informationresources it needs to create a secure environment, accessible tomultiple users, human users and intelligent agents, soft feel bemore. Web robots, there are plans for extracting knowledgefrom Web pages, that have begun their work, the number ofpages and views are all available - documentation available fromthese pages, recursively. Web robots, with destructive and nondestructiveconduct, along with human users, are consideredamong the web visitors. These intelligent agents are designed fornon-malicious purposes, such as collecting information, for thesearch engines, or malicious purposes, such as distributedattacks, which can leave the negative effects on web server. Inthis paper, a method is proposed, based on fuzzy inferencesystem for detection and classification of web visitors. Thepurpose of this paper is to introduce a hybrid fuzzy inferencesystem with instance based learning and a decision tree that canprovide in the context of Web robot detection acceptableperformance compared to other classification methods, such asneural networks, Support vector machine, Bayesian networks,and decision trees. Experiments have been carried out based onfour main criteria, accuracy, recall rate, F-measure and theROC curve.I. INTRODUCTION
Hybrid Fuzzy Inference System for Web RobotDetection authors
Javad Rajabnia
Computer Engineering Department Imamreza International University Mashhad Branch, Iran
Majid Vafaei Jahan
Computer Engineering Department Islamic Azad University Mashhad Branch, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :