The Improvement of Accuracy of Gene Expression Data classification with Gene Ontology
Publish Year: 1393
Type: Conference paper
Language: English
View: 917
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICKIS01_030
Index date: 14 April 2015
The Improvement of Accuracy of Gene Expression Data classification with Gene Ontology abstract
Gene selection is one of important research issues in analysis of gene expression data classification. Current methods try to reduce genes by means of statistical calculations and haveused semantic similarity under gene ontology. In this article a technique has been presented based on which in addition toconsidering biological relation among genes, redundant genes by means of hierarchical clustering are omitted and the accuracy of classification increases. The structure and function of this technique have also been explained. The experiments using a single real data set indicate that the proposed technique in addition to selecting fewer genes, have higher accuracy of classification (Loocv), comparing to the technique that is based on semantic similarity
The Improvement of Accuracy of Gene Expression Data classification with Gene Ontology Keywords:
The Improvement of Accuracy of Gene Expression Data classification with Gene Ontology authors
Elnaz Qofrani
Imam Reza International University Mashhad, Iran
Mehrdad Jalali
faculty member of Islamic Azad university, Mashhad branch Mashhad, Iran
Mohamad Reza Kalani
the member of informatic educational group of medical sience of mashhad Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :