Investigation of Different Kernels of Support Vector Regression on Resilient Modulus of Treated Pavements
Publish Year: 1393
نوع سند: مقاله کنفرانسی
زبان: English
View: 738
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICSAU02_0222
تاریخ نمایه سازی: 16 خرداد 1394
Abstract:
Resilient modulus (MR) plays a significant role in pavement designing in accordance with mechanistic–empirical method. Furthermore, since the utilization of different pavement stabilizers are generally established in road projects, acquiring the resilient modulus of treated pavement layers appears to be inevitable. However, due to the complexity, timeconsuming and equipment requirements for repeated load testing, several methods have been proposed to apply. Apart from the empirical formulas and multifarious regression models, the novel artificial intellect algorithm of Support Vector Regression (SVR) has been developed to evaluate the accurate value of (MR) of treated pavement layers. In this paper, the comparisons of the different kernel functions of Support Vector Regression (SVR) have been stated. Eventually, due to less sensitive to dataset input distribution, high accurate estimation, avoiding the black box and high adoptability to various dataset inputs, the polynomial kernel of SVR is selected as the most appropriate kernel for prediction model of (MR) value evaluation
Authors
Mojtaba Nazemi
M.Sc. Student of Geotechnical Engineering Department of Graduate University of Advanced Technology, Kerman, Iran
Ali Heidaripanah
Assistant Professor of Geotechnical Engineering Department of Graduate University of Advanced Technology, Kerman, Iran
Fazlollah Soltani
Assistant Professor of Geotechnical Engineering Department of Graduate University of Advanced Technology, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :