Robust Maximum Likelihood Estimation of Huber in Geodetic Networks and Multi-outlier Detection
Publish place: Geomatics 1384
Publish Year: 1384
Type: Conference paper
Language: English
View: 3,232
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
GEO84_19
Index date: 18 December 2005
Robust Maximum Likelihood Estimation of Huber in Geodetic Networks and Multi-outlier Detection abstract
Least squares adjustment suffers by the outliers. In order to employ the least squares methods, it is necessary to be ensured that all of the observations are correctly measured. Before employing the least squares methods the pre-adjustment data screening should be performed, until the gross errors among the abservations are detected. A fter doing least squares adjustment the post-adjustment data screening have to be employed to detect the small outliers observation according to Baarda is theory. This process is valid for just one erroneous observation, it means that if there are several erroneous observations among the set of observations, one cannot correctly detect the outliers. In such cases the robust methods of estimation must be employed because it is insensitive to the outliers and gross errors.
Robust Maximum Likelihood Estimation of Huber in Geodetic Networks and Multi-outlier Detection Keywords:
Robust Maximum Likelihood Estimation of Huber in Geodetic Networks and Multi-outlier Detection authors
Mehdi Es-hagh
Azad University branch of Shahre-Rey.Tehran Royal institute of Technology, Stockholm, Sweden
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :