Computational Study of high frequency nerve stimulation with transdermal amplitude modulated signal
Publish place: International Conference on Science and Engineering
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 864
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICESCON01_0414
تاریخ نمایه سازی: 25 بهمن 1394
Abstract:
A transcutaneous amplitude modulated signal (TAMS), in which a high frequency (012 kHz) sinusoidal carrier is modulated by a traditional rectangular pulse, was proposed as a non-invasive neurostimulation approach that can modulate bladder activity similarly to direct pudendal nerve stimulation. The use of high frequency waveforms for TES is suggested by the reduced impedance of the skin with increasing frequency Thus, it may be possible to reach deeper structures by adding high frequency components to the stimulation waveform .We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. Our model suggests that high-frequency signals generate larger potentials at depth than low frequencies. However, incorporating kHz signals in the stimulation waveform does not necessarily facilitate fiber excitation
Keywords:
electrical stimulation , overactive bladder , high-frequency nerve stimulation , transdermal amplitude modulated signal
Authors
Bashir Najafabadian
Senior fellow of Academic Research Core of Biomedical Engineering (ARCBME) Department of Biomedical engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Ahmad Najafabadian
Department of engineering and technology, Science and technology Dolatabad Branch, Islamic Azad University, Isfahan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :