سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

On-line Mapping Algorithms in Highly Heterogeneous Computational Grids: A Learning Automata Approach

Publish Year: 1384
Type: Conference paper
Language: English
View: 1,669

This Paper With 9 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICIKT02_076

Index date: 2 January 2008

On-line Mapping Algorithms in Highly Heterogeneous Computational Grids: A Learning Automata Approach abstract

Computational grid is a new paradigm in parallel and distributed computing systems for realizing a virtual supercomputer over idle resources available in a wide area network like the Internet. Computational Grids are characterized for exploiting highly heterogeneous resources; so, one of the main concerns in developing computational grids is how to effectively map tasks onto heterogeneous resources in order to gain high utilization. Two approaches for mapping the tasks exist, online mode and batch mode. In batch mode at any mapping event a batch of tasks are mapped, whereas in online mode only one task is mapped. In this paper, four on-line mode mapping algorithms based on learning automata are introduced. To show the effectiveness of the proposed algorithms, computer simulation has been conducted. The results of experiments show that the proposed algorithms outperform two best existing mapping algorithms when machine heterogeneity high.

On-line Mapping Algorithms in Highly Heterogeneous Computational Grids: A Learning Automata Approach Keywords:

On-line Mapping Algorithms in Highly Heterogeneous Computational Grids: A Learning Automata Approach authors

Ghanbari

MS Student, Computer Engineering Department, Amirkabir University، Soft Computing Laboratory, Computer Engineering and Information Technology Department, Amirkabir University

Meybodi

Professor of Computer Engineering Department, Amirkabir University، Soft Computing Laboratory, Computer Engineering and Information Technology Department, Amirkabir University

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
فناوری‌اطلاعات؛ دانش _ 3-5خرداد 1384 H. Casanova, T.M. Bartol, J. ...
O. H. Ibarra and C. E. Kim, "Heuristic algorithms for ...
T. D. Braun, H. J. Siegel, et al., "Taxonomy for ...
S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, ...
M. Macheswaran, S. Ali, H. J. Siegel, D. Hensgen, R.F. ...
T. D. Braun, H. J. Siegel , and N. Beck, ...
R Mirchandaney and J. _ Stankovic. "Using stochastic learning automata ...
A. Glockner and J. Pasquale, "Coadaptive behavior in a simple ...
R. D. Venkatarannna and N. Ranganathan, "Multiple cost optimization for ...
R. Amstrong, D. Hensgen, and T. Kidd, "The relative performance ...
نمایش کامل مراجع