Prediction of Tehran-Saveh freeway Accidents with using Fuzzy Neural Network and Fuzzy regression of natural logarithm
Publish place: دومین کنفرانس بین المللی علوم و مهندسی
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 934
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICESCON02_249
تاریخ نمایه سازی: 16 شهریور 1395
Abstract:
Since Iran is among the countries where the rate of accidents caused by inattention to safety rules and factors affecting it always has been rising and according to the capabilities of fuzzy neural network model in predicting accidents, the main purpose of this paper can considered using of this method in order to predict the accidents of Tehran-Saveh freeway, which is one of the most dangerous freeway in the country. In order to understand better the results obtained for determine the independent variables in the gathering information part, the data of average daily traffic, speed average of heavy truck in monthly time units, through traffic calculators were used. In this study with evaluation of Fuzzy neural network model to Fuzzy regression of natural logarithm of the freeway traffic modeling, the accuracy of the models that built in accidents studied and the results indicate that the neural network model has a better efficiency than the natural logarithm regression.
Keywords:
Authors
Zahra Souran Khanali
M.A Student of Manegment, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
Maryam Mosleh
Department of Mathematics, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :