Recognition of Facial Expressions by Extracting Local Binary Pattern Features
Publish place: The first international conference of modern research engineers in electricity and computer
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 753
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CBCONF01_0263
تاریخ نمایه سازی: 16 شهریور 1395
Abstract:
People’s facial expressions play an important role in social relations, and as a result automatic recognition of facial expressions has attracted great attention from behavioral sciences. However, automatic recognition of facial expressions is a difficult and complicated process because the similarities among different expressions will result in wrong identification of facial expression in this process. For instance, in both cases of happiness and surprise, the mouth is open, thus there is a chance of misinterpreting these two expressions. In this study, we want to extract the features of facial expressions from Cohn Kanade database by using Local binary pattern method, and improve the result of facial expression recognition. To achieve this goal and to identify these features, we assess learning methods of a machine such as: Support vector machine, Linear Discriminant Analysis and template matching, which the best result was gained through the support vector machine classifier. In this paper, we reached an above 97% rate in , Support vector machine classifier by assessing 10 folds and Kernel function of Radial basis function. This precision percentage is very desirable compared to aforementioned learning machine methods.
Keywords:
Authors
Zahra Abbasvandi
Shahed university Tehran , Iran
Milad Abbasi
Shahid beheshti university Tehran , Iran
Gholamreza Attarodi
Researcher at university of leeds Leeds , England
Nazanin Hemmati
azad university Tehran , Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :