Fuzzy-Genetic Control of Blood Glucose Level in Diabetic Patients Based on Palumbo Delayed Model
Publish place: The first international conference of modern research engineers in electricity and computer
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 810
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CBCONF01_0752
تاریخ نمایه سازی: 16 شهریور 1395
Abstract:
Diabetes is one of the important issues in the medical field in which blood glucose level control and regulation needs to permanent care. Determination of appropriate rate of insulin injection in order to blood glucose level stabilization to a normal level is vital for diabetics. In this paper, optimal plasma blood glucose tracking using subcutaneous insulin administration is investigated. Here one of the recent mathematical models is used for glucose-insulin regulatory system which consists of delayed nonlinear differential equations that is one of the most comprehensive models in this field, known as Palumbo. In this paper for the first time, the optimal fuzzy logic controller method with genetic algorithm based on the Palumbo mathematical model is used to regulate blood glucose level in diabetic patients. One of the most important features of the proposed controller is the ability to set the parameters for patients using genetic algorithm. Finally, the simulation results of the fuzzy control method and fuzzy- genetic control method are compared with the control method based on Palumbo feedback linearization, which indicates the proper functioning of the proposed controller for tracking of desired blood glucose level at the lowest possible error.
Keywords:
Fuzzy logic method , Genetic algorithm , Glucose-Insulin regulation system , Insulin injection , Palumbo delayed nonlinear model
Authors
Vahideh Heydari
Electrical Engineering, Khorasan Institute of Higher Education Mashhad, Iran
Ali Karsaz
Dept. of Electrical Engineering, Khorasan Institute of Higher Education Mashhad, Iran
Amin Noori
Instructor Dept. of Electrical Engineering, Sadjad University Mashhad, Iran
Reza Heydari
M.Sc. Electrical Engineering of Ferdowsi University Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :