A Single-to-differential Low Noise Amplifier design Exploiting Differential Active inductor in 0.18μ
Publish Year: 1395
Type: Conference paper
Language: English
View: 715
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
RKES01_270
Index date: 11 September 2016
A Single-to-differential Low Noise Amplifier design Exploiting Differential Active inductor in 0.18μ abstract
In this paper a single input, differential output low noise amplifier is proposed. The LNA utilizes a noise reduction technique to improve the noise performance. It is composed of two stages. The first stage is a CS cascode parallel with CG cascode stage and the second stage is composed of differential CS cascode amplifier. A differential active inductor is used as loads of the differential amplifier to increase the tune-ability of the output frequency range and decrease the chip size. The proposed single -to- differential amplifier by using the noise reduction technique and gm-boosting technique present lower noise figure in comparison with the other single to differential LNAs. The S-to-D-LNA is simulated with Cadence Spectra using 0.18μm CMOS technology. For the selected frequency of 1.5, 2 and 2.4 GHz, the simulation results show the S21 of 12.8, 32.4 and 35.4 dB, S11 of -19, -14.2, -12.4 dB, S12 of -63.8, -64.4 and -48 dB and NF of 3.4, 3.9 and 4 dB, respectively. The power dissipation is 9.8 mw from 1.8 V DC power supply.
A Single-to-differential Low Noise Amplifier design Exploiting Differential Active inductor in 0.18μ Keywords:
differential low-noise amplifier (DLNA) , single-to-differential low-noise amplifier (S-to-D-LNA) , Differential Active Inductor (DAI) , Noise Figure , Gm-boosting , Common Source Cascode Amplifier (CS-Cascode)
A Single-to-differential Low Noise Amplifier design Exploiting Differential Active inductor in 0.18μ authors
Hojjat Babaei kia
Department of Microelectronics Engineering, University College of Science and Technology Urmia, IRAN
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :