New Fast Ignition of DT Fusion Reactions Considering TBR
Publish place: دومین کنفرانس بین المللی پژوهش در مهندسی، علوم و تکنولوژی
Publish Year: 1394
Type: Conference paper
Language: English
View: 503
This Paper With 25 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
RSTCONF02_040
Index date: 11 September 2016
New Fast Ignition of DT Fusion Reactions Considering TBR abstract
Deuteron beam created by laser acceleration in fast ignition D-T fuels is proposed as an ignition mechanism. The fuel is assumed to have density 3 300g.cm and a Maxwellian velocity distribution at a uniform temperature. The stopping powers of the fuel species for deuterons with high initial energy are evaluated and used to evaluate the energy deposited in the fuel. The energy deposition in the fuel reactants and the deposited energy is augmenteddue to the additional fusion reactions initiated by the beam particles. Results show that the extra energy from beam-target fusion reactions is important. The extra energy is more significant at lower beam energy and higherelectron temperature.Also conditions necessary to achieve D-T fuel self-sufficiency in fusion reactors are derivedthrough extensive modeling and calculations of the required and acievable tritium breeding ratios as functions of the many ractor parameters and candidate design concepts.It is found that the excess margin in the breeding potential is not sufficient to cover all present uncertainties.Thus the goal of attaining fuel self-sufficency significantly restricts the allowable the parameter space and design concepts
New Fast Ignition of DT Fusion Reactions Considering TBR Keywords:
New Fast Ignition of DT Fusion Reactions Considering TBR authors
S.N Hosseinimotlagh
Department of Physics, Islamic Azad University, Shiraz Branch, Shiraz, Iran
S Tayebi
Department of Physics, Islamic Azad University, Shiraz Branch, Shiraz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :