Fuzzy Learning Automata: A Novel Approach For Multimodal Function Optimization
Publish place: 1st Joint Congress on Fuzzy and Intelligent Systems
Publish Year: 1386
Type: Conference paper
Language: English
View: 1,816
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
FJCFIS01_224
Index date: 3 June 2008
Fuzzy Learning Automata: A Novel Approach For Multimodal Function Optimization abstract
The concept of fuzzy learning automata (LA) has been introduced to construct a novel algorithm for optimizing the multimodal complex functions. In this approach a fuzzy controller is designed to change the internal LA parameters adaptively while the search process is executing by LA. The proposed algorithm has been tested on different kinds of benchmark functions. The experimental results show more powerfulness and effectiveness of the proposed algorithm in comparison to other function optimization algorithms based on the LA. The proposed algorithm can be considered as an effective search and optimization algorithm and may be utilized for wide range of engineering tasks like data mining, pattern recognition, image processing, adaptive control, power systems, and other optimization problems.
Fuzzy Learning Automata: A Novel Approach For Multimodal Function Optimization Keywords:
Fuzzy Learning Automata: A Novel Approach For Multimodal Function Optimization authors
Seyed-Hamid Zahiri
Department of Electrical Engineering, Faculty of Engineering, Birjand University, Birjand, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :