Improvement of Seismic Performance of SMRFs by Using a New Distribution of Lateral Load Pattern
Publish Year: 1395
Type: Conference paper
Language: English
View: 695
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICCACS01_056
Index date: 15 December 2016
Improvement of Seismic Performance of SMRFs by Using a New Distribution of Lateral Load Pattern abstract
This paper proposes a new distribution of lateral loading pattern for designing Steel Moment Resisting Frames (SMRF) using the uniform distribution of damage over the height of structures. Evaluation of the seismic behavior of SMRF shows that these structures have acceptable performance when compared with other types of frames Although pervious studies showed that utulizing these types of structures the formation of the soft-storey mechanism can be prevented, the structural capacity are not entirely exploited over the height of buildings. Based on the theory of uniform distribution of deformations, lateral- resistant properties of a structure can be distributed over the height in such a way that they can exhibit more uniform deformation. In this study, two Steel Moment Resisting Frames of 5 and 7 stories have been designed subjected to several ground motions. Using the theory of uniform damage distribution an optimization technique leading to more uniform damage distribution over the height of the structure is developed.
Improvement of Seismic Performance of SMRFs by Using a New Distribution of Lateral Load Pattern Keywords:
Steel Moment Resisting Frames , Uniform distribution of deformation , Lateral load pattern , Nonlinear analysis
Improvement of Seismic Performance of SMRFs by Using a New Distribution of Lateral Load Pattern authors
Mahyar Akbari
Master of Science in Civil Engineering - Structural
Farhad Alizadeh Afshar
Master of Science in Civil Engineering -Foundation,
Majid Mahjoor Lotfabadi
Master of Science in Civil Engineering -Earthquake
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :