Interpretation of Power Transformer Frequency Response Analysis Using Non-Parametric statistical Methods
Publish place: اولین مسابقه کنفرانس بین المللی جامع علوم مهندسی در ایران
Publish Year: 1395
Type: Conference paper
Language: English
View: 801
- Certificate
- I'm the author of the paper
Export:
Document National Code:
CCESI01_351
Index date: 24 January 2017
Interpretation of Power Transformer Frequency Response Analysis Using Non-Parametric statistical Methods abstract
Inter-turn faults have a significant role in power transformers and neglecting them can result more serious damages in power transformers. However, there is not a great study on this subject so far. Sweep Frequency Response Analysis (SFRA), based on comparisons between frequency responses, is a powerful method to detect these faults. Analyzing of the frequency response to detect the transformer faults requires the experts to interpret the test results. The main problem with SFRA is to need an expert view in failure detecting. The most accurate solution for this problems using statistical indicator. This paper means to propose a number of nonparametric statistical methods that have not been used so far. Then these equations are applied to some different sets of experimental SFRA measurements. Finally, some nonparametric statistical indicators that have good treat in recognizing inter-turn faults, using SFRA measurement, are presented.
Interpretation of Power Transformer Frequency Response Analysis Using Non-Parametric statistical Methods Keywords:
Interpretation of Power Transformer Frequency Response Analysis Using Non-Parametric statistical Methods authors
Hadi Fateh
Phd Student, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran, Iran
Rahim Shamsi Varzeghan
MSc at Electrical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
Mohammad Reza Jannati Oskuee
Phd Student, Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :