Analog CMOS Kernel for ML Decoding of Convolutional Codes
Publish place: 14th Iranian Conference on Electric Engineering
Publish Year: 1385
Type: Conference paper
Language: English
View: 1,768
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICEE14_139
Index date: 15 July 2008
Analog CMOS Kernel for ML Decoding of Convolutional Codes abstract
Decoding of convolutional codes are computationally demanding especially with large code words. It is argued that analog implementations of such decoders can be much more efficient than its digital counterpart. Viterbi Algorithm (VA) is an efficient method to achieve a Maximum Likelihood (ML) solution for convolutional codes. Implementation of Add- Compare-Select which is the kernel of digital realization of the algorithm is still challenging because its effect on overall speed and power consumption of decoder. In this paper a current-based analog CMOS circuit is introduced and demonstrated by its transient and DC simulation results, assuming a 0.35μm CMOS technology. Two main source of errors due to practical limitation of the proposed circuit are also considered. Behavioral simulation shows that performance degradation with respect to standard VA is negligible.
Analog CMOS Kernel for ML Decoding of Convolutional Codes Keywords:
Analog CMOS Kernel for ML Decoding of Convolutional Codes authors
M.R. Zahabi
Xlim – UMR CNRS ۶۱۷۲ , Departement C۲S۲ , University of Limoges
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :