تحلیل متالوژنیک پتانسیل آانی سازی مس درمنطقه طارم با سه روش Weight of Evidence Artificial Neural Networks و ( CA) Characteristic Analysis،( WOE)
Publish place: Geomatics 1385
Publish Year: 1385
Type: Conference paper
Language: English
View: 2,938
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
GEO85_13
Index date: 14 January 2006
تحلیل متالوژنیک پتانسیل آانی سازی مس درمنطقه طارم با سه روش Weight of Evidence Artificial Neural Networks و ( CA) Characteristic Analysis،( WOE) abstract
تحلیل متالوژنیک کانی زایی مهمترین مرحله از یک پروسه اکتشافی بحساب می آید. در این میان GIS بعنوان یک تکنولوژی مهم در اکتشافات معدنی، ابزاریست که در مراحل مختلف فرایند اکتشافی مانند مدیریت پایگاه داده ها، ترکیب، نمایش و نهایتا تحلیل داده های مذکور مورد استفاده قرار می گیرد. متاسفانه تحقیقات نسبتا کمی در روش شناسی تحلیلهای متالوژنیک و یا چگونگی استفاده از GIS در تحلیل روند کانیزایی برای فعالتیهای اکتشافی صورت گرفته است. روشهای موجود ترکیب داده ها از برخی محدودیت های قابل توجه برخوردارند. روشهای آماری مانند WOE و CA برای نواحی که بخوبی شناخته شده نیستند و یا اطلاعات اندکی از آنها در دست می باشد، نتایج قابل اطمینانی را ارائه نمی دهند. مدلهای مفهومی و دانش پایه نیز علی رغم اینکه نیازمند دانش اولیه کمی از منطقه می باشند، با این وجود وابسته به نظرات کارشناسی می باشند. شبکه های عصبی مصنوعی به عنوان یک روش غیر خطی و غیر پارامتریک بواسطه قابلیتهای منحصر به فردی از قبیل قابلیت آموزش، پردازش موازی و قابلیت درونیابی بالا و بدون نیاز به دانش اولیه از داده ها، بشکل مناسبتری روابط پیچیده و غیر خطی فرایندکانی زایی را مدل می نمایند. در این مقاله بمنظور تحلیل مدل کانی زایی مس (Cu ) برای برگه 100000/1 طارم، ابتدا اطلاعات مورد نیاز از داده های سنجش از دور، ژئوفیزیک هوایی و زمین شناسی استخراج و سپس فرایند مدلسازی باسه الگوریتم Characteristic Analysis ، Weight of Evidence و Artificial Neural Networks انجام شد. از 26 اندیس معدنی Cu برای آموزش و تست سه روش مذکور استفاده شد. نتایج حاصل از سه روش ANN , CA, WOE مورد تجزیه و تحلیل قرار گرفت. نتایج حاصله حاکی از بهبود قابل ملاحظه روش ANN نسبت به دو روش دیگر است.
تحلیل متالوژنیک پتانسیل آانی سازی مس درمنطقه طارم با سه روش Weight of Evidence Artificial Neural Networks و ( CA) Characteristic Analysis،( WOE) Keywords:
سیستم اطلاعات جغرافیایی , شبکه های عصبی مصنوعی , الگوریتمهای داده پایه , تحلیلهای متالوژنیک , نقشه پتانسل معدنی
تحلیل متالوژنیک پتانسیل آانی سازی مس درمنطقه طارم با سه روش Weight of Evidence Artificial Neural Networks و ( CA) Characteristic Analysis،( WOE) authors
جلال کرمی
دانشجوی دکترای GIS دانشگاه صنعتی خواجه نصیرالدین طوسی
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :