BAGGING AND SUBAGGING IN MIXTURE MODELS
Publish place: 38th Annual Iranian Mathematics Conference
Publish Year: 1386
Type: Conference paper
Language: English
View: 1,627
متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.
- Certificate
- I'm the author of the paper
Export:
Document National Code:
AIMC38_209
Index date: 18 August 2008
BAGGING AND SUBAGGING IN MIXTURE MODELS abstract
Two bagging approaches, say 1/2n-out-of-n without replacement (subagging) and n-out-of-n with replacement (bagging) have been applied in the problem of estimation of the parameters in a multivariate mixtre model. It has been observed by Monte Carlo simulationa that both bagging methods have imperoved the standard deviation of the maximum likelihood estimator of the mixing proportion, whilst the absolute bias increased slightly. In estimating the component distributions, bagging could increase the root mean integrated sguared error when estimating the most probable component.
BAGGING AND SUBAGGING IN MIXTURE MODELS Keywords:
BAGGING AND SUBAGGING IN MIXTURE MODELS authors
REZA PAKYARI
Department of Mathematics, Arak University, Arak, Iran