MODAL LOGIC OF HERBRAND CONSISTENCY IN WEAK ARITHMETICS
Publish place: 38th Annual Iranian Mathematics Conference
Publish Year: 1386
Type: Conference paper
Language: English
View: 1,915
متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.
- Certificate
- I'm the author of the paper
Export:
Document National Code:
AIMC38_259
Index date: 18 August 2008
MODAL LOGIC OF HERBRAND CONSISTENCY IN WEAK ARITHMETICS abstract
Model logic of Herbrand-style provability in weake arthmetics is studied. Though full axiomation of this logic is an open problem, we present some axioms and rules of this logic which are sufficient to derive a formalized form of Godels second incompleteness theorem for Herbrand provability of I∆0+Ω1. In other world, we shown that I∆0+Ω1 can prove the unprovability of its Herbarand consistency in itself.
MODAL LOGIC OF HERBRAND CONSISTENCY IN WEAK ARITHMETICS Keywords:
MODAL LOGIC OF HERBRAND CONSISTENCY IN WEAK ARITHMETICS authors
SAEED SALEHI
Department of Mathematics, Institute For Advanced Studies in Basic Sciences (IASBS)