سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A NEW NUMERICAL METHOD FOR INTERPOLATING CUBIC SPLINE FUNCTIONS WITH CLAMPED BOUNDARY CONDITION

Publish Year: 1386
Type: Conference paper
Language: English
View: 2,101

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

Export:

Link to this Paper:

Document National Code:

AIMC38_267

Index date: 18 August 2008

A NEW NUMERICAL METHOD FOR INTERPOLATING CUBIC SPLINE FUNCTIONS WITH CLAMPED BOUNDARY CONDITION abstract

In this paper, we introduce a new technique for determining interpolating cubic spline functions with clamped boundary conditon. By intriducing an artificial cost functional and use the important minimum-norm property of spline functions, the problem is modified into one consisting of the minimaization of a positine linear functional over a set of Radon measures. Then we obtain an optimal measure which is approximated by a finite combination of atomic measures, and by using atomic measures we change this one to a finite dimensional linear programming problem. Finally we find a piecewies constant optimal function on every subinterval and then the approximated interpolating cubic spline functions. Some examples are given show the procedure.

A NEW NUMERICAL METHOD FOR INTERPOLATING CUBIC SPLINE FUNCTIONS WITH CLAMPED BOUNDARY CONDITION Keywords:

Interpolating cubic spline functions , optimal control , measre theory , linear programming

A NEW NUMERICAL METHOD FOR INTERPOLATING CUBIC SPLINE FUNCTIONS WITH CLAMPED BOUNDARY CONDITION authors

SOHRAB EFFATI

Department of Mathematics, Teacher training University of Sabzevar, Iran