سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A NUMERICAL ALGORITHM FOR SOLVING A PARABOLIC PROBLEM BASED ON QUASI-MONTH CARLO METHOD

Publish Year: 1386
Type: Conference paper
Language: English
View: 1,955

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

Export:

Link to this Paper:

Document National Code:

AIMC38_319

Index date: 18 August 2008

A NUMERICAL ALGORITHM FOR SOLVING A PARABOLIC PROBLEM BASED ON QUASI-MONTH CARLO METHOD abstract

A kind of quasi-Monte Carlo method called Haselgroves method has been used for the evaluation of the multiple integral over hypercuble [0.1]p. This method is implemented to solve an initial value problem of the heat equation. Sugihara and Murota proposed the use of the weight function The error bound of their method is of the order O(1/Nk) where N is the number of p-dimensional quasi-random vectors while it is O(N-r), r ≥1 for Haselgoroves method. A numerical algoritm is Used to generate quasi-random vectors. The error table demonstrates the efficiency of the presented algorithm.

A NUMERICAL ALGORITHM FOR SOLVING A PARABOLIC PROBLEM BASED ON QUASI-MONTH CARLO METHOD Keywords:

quasi Monte Carlo method , initial value problem of the heat equation Haselgroves method , irrational numbers , multiple integral

A NUMERICAL ALGORITHM FOR SOLVING A PARABOLIC PROBLEM BASED ON QUASI-MONTH CARLO METHOD authors

R FARNOOSH

School of Mathematics, Iran University of sciences & Technology, Narmak, Tehran, Iran

M AALAEI

School of Mathematics, Iran University of sciences & Technology, Narmak, Tehran, Iran