LNG Dispersion Modeling, by using a new modified method to model offshore spills
Publish place: 12th National Iranian Chemical Engineering Congress
Publish Year: 1387
Type: Conference paper
Language: English
View: 1,738
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
NICEC12_289
Index date: 20 September 2008
LNG Dispersion Modeling, by using a new modified method to model offshore spills abstract
Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. The risk from released flammable gases, such as LNG, is very dependent on the accuracy of the dispersion modeling. The object of this paper is to model consequence of LNG release and atmospheric dispersion by using commercial code FLUENT 6.2 and compare the results with experimental data. In this study, at first, LNG pool spreading and evaporation has been modeled to estimate the evaporation rate, pool radius and temperature of LNG during spill and then the information on pool spread and evaporation obtained from this simulation has been used as input for the natural gas cloud simulation. The spill model used is the Hissong model [1] modified by using a new method for considering changes in temperature with time and distance to the rupture site for spills on water. The simulation shows overall good agreement with experimental results.
LNG Dispersion Modeling, by using a new modified method to model offshore spills Keywords:
LNG Dispersion Modeling, by using a new modified method to model offshore spills authors
M Karbaschi
Department of Chemical and Petroleum Engineering, Sharif University of Technology Tehran, Iran
D Rashtchian
Department of Chemical and Petroleum Engineering, Sharif University of Technology Tehran, Iran
A Rafie
Department of Chemical and Petroleum Engineering, Sharif University of Technology Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :