Predicting the Behavior of welded semi-rigid Connections exposed to fireUsing Artificial Neural Network
Publish place: 7th Conference of Steel and Structures
Publish Year: 1395
Type: Conference paper
Language: English
View: 558
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ISSS07_006
Index date: 1 July 2017
Predicting the Behavior of welded semi-rigid Connections exposed to fireUsing Artificial Neural Network abstract
In this paper, an artificial neural networking (ANN) model is described to predict the moment-rotation response of semi-rigid beam-to-column joints at elevated temperature. Two types of beam-to-column welded joints, i.e. top and seat welded bolted angle connection with and without web angle are modeled. The applied moment and joint’s temperatures are used as input parameters to model the rotational capacity of the joint with increasing temperatures. Data from 22 experimental fire tests and verified finite element model are used for training and testing and validating the neural network models.The model’s predicted values are compared with actual test results. The results indicate that the models can predict the moment–rotation–temperature behavior of semi-rigid beam to-column joints with very high accuracy. The developed model can be modified easily to investigate other parameters that influence theperformance of joints in fire.
Predicting the Behavior of welded semi-rigid Connections exposed to fireUsing Artificial Neural Network Keywords:
Predicting the Behavior of welded semi-rigid Connections exposed to fireUsing Artificial Neural Network authors
Amir Saedi Daryan
Assistant Professor, Civil Engineering Department, Shahid Beheshti University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :