سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

بهبود خوشه بندی داده ها به روش K_means با استفاده از بهینه سازی ازدحام ذرات بهبود یافته باتیوری آشوب آبشاری

Publish Year: 1395
Type: Conference paper
Language: Persian
View: 646

This Paper With 9 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ICTCK03_034

Index date: 1 July 2017

بهبود خوشه بندی داده ها به روش K_means با استفاده از بهینه سازی ازدحام ذرات بهبود یافته باتیوری آشوب آبشاری abstract

خو شه بندی یک تکنیک تحلیل داده متداول برای شنا سایی گروه های همگن از ا شیاء بر اساس ارزش ویژگی های آنها است،که در سالهای اخیر روش های متعددی جهت بهبود خوشه بندی داده ها ارایه شده است. از میان این روش ها، الگوریتم های فرا ابتکاری هم توانسته اند عملکرد خوشه بندی را بهبود دهند. در این مقاله از ترکیب بهینه سازی ازدحام ذرات بهبود یافته با تیوری آشوب آبشاری با نگاشت لجستیک جهت بهبود خو شه بندی داده ها به روش K-means استفاده شده است. الگوریتم پیشنهادی با نام CCPSO می باشد که از ترکیب روش بهینه سازی ازدحام ذرات بهبود یافته با تیوری آشوب آبشاری لجستیک ایجاد شده است، نتایج شبیه سازی نشان می دهد که خوشه بندی روش پیشنهادی نسبت به خوشه بندی با روش بهینه سازی ازدحام ذرات بدون تیوری آشوب آبشاری، دارای دقت بیشتری نیز می باشد. همچنین نتایج روش پیشنهادی بر روی توابع محک نشان میدهد که در بیشتر مواقع بهتر از الگوریتم های فراابتکاری دیگر از جمله ژنتیک، بهینه سازی ازدحام ذرات پایه، الگوریتم رقابت استعماری و بهینه سازی گرگ خاکستری عمل می کند.

بهبود خوشه بندی داده ها به روش K_means با استفاده از بهینه سازی ازدحام ذرات بهبود یافته باتیوری آشوب آبشاری Keywords:

داده کاوی , خوشه بندی k_means , بهینه سازی ازدحام ذرات , آشوب آبشاری

بهبود خوشه بندی داده ها به روش K_means با استفاده از بهینه سازی ازدحام ذرات بهبود یافته باتیوری آشوب آبشاری authors

دنیا قسوری

گروه کامپیوتر نرم افزار، واحد مشهد، دانشگاه آزاد اسلامی واحد مشهد، ایران

افشین افروغی نیا

گروه برق کنترل، واحد مشهد، دانشگاه آزاد اسلامی واحد مشهد، ایران

مهدی یعقوبی

گروه کامپیوتر برق، واحد مشهد، دانشگاه آزاد اسلامی واحد مشهد، ایران

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Hartigan, John A., and Manchek A. Wong. "Algorithm AS 136: ...
Mishra, Sashikala, Kailash Shaw, and Debahuti Mishra. "A new meta-heuristic ...
Poli, Riccardo, James Kennedy, and Tim "Particle ...
optimization." Swarm intelligence 1.1 (2007): 33-57. ...
Chandramouli, Krishna, and Ebroul Izquierdo. "Image classification using chaotic particle ...
Conference on Image Processing. 2006. ...
Cohen, Sandra CM, and Leandro N. de Castro. "Data clustering ...
Tran, Dang Cong, Zhijian Wu, and Changshou Deng. "An improved ...
clustering." Intelligent (2015): 1049-1070. ...
Hashmi, Adil, et al. "Swarm intelligence based approach for data ...
Khalilia, Mohammed, Sounak Chakraborty, and Mihail Popescu. "Predicting disease risks ...
forest." BMC medical informatics and decision making 11.1 (2011): 51. ...
Maghsoudi, Rouhollah, et al. "Representing the New Model for Improving ...
Journal of Mathemati cs Science 2.2 (2011): 329-336. ...
Farmer, J. Doyne, Norman H. Packard, and Alan S. Perelson. ...
Van der Merwe, D. W., and Andries Petrus Engelbrecht. "Data ...
Computation, 2003. CEC'03. The 2003 Congress on. Vol. 1. IEEE, ...
Neshat, Mehdi, et al. "A new cooperative algorithm based on ...
Tran, Dang Cong, Zhijian Wu, and Changshou Deng. "An improved ...
clustering." Intelligent (2015): 1049-1070. ...
J.A. Hartigan, Clustering algorithms, 1st Edition, Wiley, New York, 1975. ...
Arthur, David, and Sergei Vassilvitskii. "k- careful ...
seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete ...
Tan, Long. "A clustering K-means algorithm improved ...
Network Technologies (CSNT), 2015 Fifth International Conference On. IEEE, 2015. ...
نمایش کامل مراجع

مقاله فارسی "بهبود خوشه بندی داده ها به روش K_means با استفاده از بهینه سازی ازدحام ذرات بهبود یافته باتیوری آشوب آبشاری" توسط دنیا قسوری، گروه کامپیوتر نرم افزار، واحد مشهد، دانشگاه آزاد اسلامی واحد مشهد، ایران؛ افشین افروغی نیا، گروه برق کنترل، واحد مشهد، دانشگاه آزاد اسلامی واحد مشهد، ایران؛ مهدی یعقوبی، گروه کامپیوتر برق، واحد مشهد، دانشگاه آزاد اسلامی واحد مشهد، ایران نوشته شده و در سال 1395 پس از تایید کمیته علمی سومین کنگره بین المللی فن آوری، ارتباطات و دانش پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله داده کاوی، خوشه بندی k_means، بهینه سازی ازدحام ذرات، آشوب آبشاری هستند. این مقاله در تاریخ 10 تیر 1396 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 646 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که خو شه بندی یک تکنیک تحلیل داده متداول برای شنا سایی گروه های همگن از ا شیاء بر اساس ارزش ویژگی های آنها است،که در سالهای اخیر روش های متعددی جهت بهبود خوشه بندی داده ها ارایه شده است. از میان این روش ها، الگوریتم های فرا ابتکاری هم توانسته اند عملکرد خوشه بندی را بهبود دهند. در این مقاله ... . این مقاله در دسته بندی موضوعی داده کاوی طبقه بندی شده است. برای دانلود فایل کامل مقاله بهبود خوشه بندی داده ها به روش K_means با استفاده از بهینه سازی ازدحام ذرات بهبود یافته باتیوری آشوب آبشاری با 9 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.