Optimal Crop Planning and Monthly Water Demand Forecasting Based on Consideration of Climate Conditions by Fuzzy Inference Systems
Publish place: 8th International Congress on Civil Engineering
Publish Year: 1388
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,164
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCE08_060
تاریخ نمایه سازی: 28 آبان 1387
Abstract:
A logical and correct prediction of water demands is an important parameter for allocating of water resources. The water demands are depended on cropping area and the type of crops. On the other hand, the cropping area is depended on farmers’ decision. They have decided on the extensiveness of the cultivated area and the type of crops with regard to different parameters such as climatic and economic conditions, the demand of consumers and supports of governments. In these parameters the climatic conditions and their influence on water resources could have a high impact on the farmers’ decision for cropping. The scrutiny of experiences and ideas of users, stakeholders, farmers and decision makers could be useful to accomplish a clear determination of water demands. In this paper, we have studied the climatic conditions and their influence on cropping and forecasting the demands of water in Najafabad plain. For these goals the Fuzzy Inference Systems (FIS) have been used. This method is used for creating a relation between parameters which are defined as climatic conditions and their influence on water demands. The consequences of the problem are the total annual cropping area and the lean of farmers to basic crops.
Keywords:
Authors
Mohammdali Alijanian
M.Sc., Dept. of Civil Engineering, Isfahan University of Technology
Hamid R. Safavi
Assistant Professor, Dept. of Civil Engineering, Isfahan University of Technology
Ahmad Abrishamchi
Professor, Dept. of Civil Engineering, Sharif University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :