سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

مقایسه روش های رگرسیون خطی، زمینآماری و شبکه عصبی مصنوعی در مدل سازی کربن آلیدر اراضی خشک دشت سیستان

Publish Year: 1393
Type: Journal paper
Language: Persian
View: 404

This Paper With 11 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JSW-28-6_016

Index date: 24 October 2017

مقایسه روش های رگرسیون خطی، زمینآماری و شبکه عصبی مصنوعی در مدل سازی کربن آلیدر اراضی خشک دشت سیستان abstract

آگاهی از تغییرات مکانی کربن آلی در کاربریهای مختلف اراضی کمک موثری به تفسیر و شبیه سازی رفتار اکوسیستم های خاکی در مواجهه با تغییرات اقلیمی و زیست محیطی خواهد نمود. هدف از این تحقیق مقایسه روش های رگرسیونی، زمین آمار و شبکه عصبی مصنوعی در تخمین مقادیر کربن آلی در 192 نمونه خاک، از خاک های سطحی ( 0 تا 30 سانتی متر) بخشی از دشت سیستان (منطقه میانکنگی) بود. در این تحقیق، تنها 5 درصد تغییرات کربن آلی در منطقه مورد مطالعه توسط متغیرهای موجود در مدل رگرسیون خطی توجیه گردید R2=0/05 همچنین بهترین روش زمین آماری، یعنی روش کوکریجینگ ساده با استفاده از متغیر کمکی رس، با R2=0/23 و RMSE=0/127 فقط تا اندازهای توانایی تخمین میزان کربن آلی را داشت. این در صورتی است که شبکه عصبی مصنوعی با استفاده از پارامترهای طول و عرض جغرافیایی کارایی بسیار بهتری باR2=0/79 و RMSE=0/044 در تخمین مقدار کربن آلی نسبت به روشهای رگرسیون خطی و زمین آماری نشان داد . در نتیجه روش ترکیبی شبکه عصبی کریجینگ بهترین روش برای پهنه بندی کربن آلی در منطقه مورد مطالعه شناخته شد

مقایسه روش های رگرسیون خطی، زمینآماری و شبکه عصبی مصنوعی در مدل سازی کربن آلیدر اراضی خشک دشت سیستان Keywords:

مقایسه روش های رگرسیون خطی، زمینآماری و شبکه عصبی مصنوعی در مدل سازی کربن آلیدر اراضی خشک دشت سیستان authors

احمد غلامعلی زاده آهنگر

استادیار گروه مهندسی ،علوم خاک، دانشکده آب وخاک، دانشگاه زابل

فریدون سارانی

دانشجوی کارشناسی ارشد گروه مهندسی ،علوم خاک، دانشکده آب وخاک، دانشگاه زابل

مسعود هاشمی

دانشجوی گروه مهندسی ،علوم خاک، دانشکده آب وخاک، دانشگاه زابل

اسماء شعبانی

مربی گروه مهندسی ،علوم خاک، دانشکده آب وخاک، دانشگاه زابل