Suspended sediment prediction by ANN and neuro-fuzzy models
Publish Year: 1388
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,393
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCEMI01_120
تاریخ نمایه سازی: 12 فروردین 1388
Abstract:
The prediction of sediment load and its variability in rivers is a component of water resources and environmental engineering and management of infrastructures. Suspended sediment concentration (SSC) prediction in a gauging station in the USA by artificial neural networks (ANNs), Neuro-Fuzzy (NF) and conventional sediment rating curve (SRC) models were investigated in this research. The models were trained using daily river discharge and SSC data belonging to Little Black River gauging station in the USA. The suspended sediment concentration predicted by the NF model was in satisfactory agreement with the measured data. The cumulative suspended sediment load estimated by ANN and NF models is closer to the actual data than the SRC method. In general, the results illustrate that the NF model produced better performance in SSC prediction in various evaluations than the ANN and SRC models.
Keywords:
Authors
Taher Rajaee
Associate Prof., Dept. of Civil Eng., Qom University, Qom, Iran
Seyed Ahmad Mirbagheri
Associate Prof. Dept. of Civil Eng., K.N.TOOSI University of Technology
Mohammad Zounemat-Kermani
Dept. of Water Eng., Shahid Bahonar University of Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :