A Thoroughgoing Design of a Rapid-cycle Microfluidic Droplet-based PCR Device to Amplify Rare DNA Strands

Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 512

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-11-1_016

تاریخ نمایه سازی: 1 اردیبهشت 1397

Abstract:

DNA is a molecule and assortment of fruitful information of organisms and a wide range of viruses. Polymerase chain reaction (PCR) is a process used to amplify DNA strands in order to generate millions of them and extract the applicable information. Although conventional methods for PCR are flourishing to a certain extent, they have such major drawbacks as contamination, high material consumption, and low-speed function. By the combination of PCR devices with the microfluidic approach and integrating them with droplet generation technology, the mentioned problems can be eliminated. In this study, a novel two-step rapid-cycle dropletbased PCR (dPCR) device, considering the design of microchannel and heat transfer system, has been presented. First, numerous studies have been conducted to select the proper droplet generator for the integration of the droplet generation with the PCR device. Then, with the careful attention to the requirements of a PCR device, the geometry of different zones of the PCR device has been, meticulously, designed. In the next and last step, the heat transfer system for the designed zones of the PCR device has been planned. Afterward, results are examined carefully which indicate that in a cycle of PCR, they are not any major discrepancies between the designed dPCR and the ideal one—the one that is intended to be created.

Authors

M Mollajan

Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

S Razavi Bazaz

Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

A Abouei Mehrizi

Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran