Use of Fuzzy Logic for Predicting Two Phase Inflow Performance Relationship of Oil Wells
Publish place: 06th International Congress on Chemical Engineering
Publish Year: 1388
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,896
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICHEC06_536
تاریخ نمایه سازی: 1 مهر 1388
Abstract:
For pressures above bubble-point pressure, a straight line equation is generally used to estimate the well inflow performance. However, when the pressure drops below the bubble-point pressure, the trend deviates from that of the simple straight line relationship. Although analytical methods can accurately represent the well IPR behavior above bubble point pressure, only empirical correlations are available for IPR modeling of two-phase reservoirs and hence some deviations from actual data are often observed.Artificial intelligence techniques such as neural networks, fuzzy logic, and genetic algorithms are increasingly powerful and reliable tools for petroleum engineers to analyze and interpret different areas of oil and gas industry. In this paper, two neuro-fuzzy models, including Local Linear Neuro-Fuzzy Model (LLNFM) and Adaptive Neuro Fuzzy Inference System (ANFIS) have been compared with Multi-Layer Perceptron (MLP) and empirical correlations to predict the inflow performance of vertical oil wells experiencing two phase flo
Keywords:
Authors
A Sajedian
Kish Petroleum Engineering Company
M Ebrahimi
Kish Petroleum Engineering Company۱, ACECR- Production Technology Research Institute۲
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :