سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

بررسی و ارزیابی رویکردهای تشخیص نفوذ بر مبنای سیستم ایمنی مصنوعی

Publish Year: 1397
Type: Journal paper
Language: Persian
View: 564

This Paper With 24 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ICI-2-1_002

Index date: 9 March 2019

بررسی و ارزیابی رویکردهای تشخیص نفوذ بر مبنای سیستم ایمنی مصنوعی abstract

در سالهای اخیر جهت گیری کارهای پژوهشی در زمینه ارایه سیستم های تشخیص نفوذ به سمت الهام گرفتن از سیستم ایمنیزیستی به منظور حل مسایل پیچیده این حوزه بوده است. سیستم ایمنی مصنوعی و پتانسیل اعمال مصونیت آن، با پیش زمینه دفاعزیستی آن در واقع راهکاری برای کنترل امنیت و تشخیص ناهنجاری شبکه سازمان مطرح می باشد. در این پژوهش متدهای مختلفایمنی مصنوعی در مقایسه با سایر متدهای یادگیری ماشین و الگوریتم های فراابتکاری با هدف ارایه رویکردی نو برای حل مسیلهتشخیص نفوذ بررسی و ارزیابی شده اند. ارزیابی ها در نرم افزار استاندارد Weka3.6 تحت دادگان نفوذ NSL-KDD انجام شدهاند. نتایج آزمایشات حاکی از آنست که بعد از تعبیه فاز انتخاب ویژگی در متدهای ایمنی مصنوعی به ترتیب در Immunos99, ARIS2Paralell و CSCA منجر به افزایش محسوسی در دقت دسته بندی می گردند. در نتیجه رویکرد Bat + ARIS2Paralell 649 به ترتیب با ضریب همبستگی 0.946، نرخ تشخیص 0.973، صحت 0.9724 وخطای مثبت کاذب 0.028 دسته بندی مطلوب تری را در بین سایر رویکردها داشته و به نظر میرسد به دلیل نرخ همبستگی بالا قابلیت اطمینان در خصوصامکان بهره برداری در جهت توسعه سیستم های تشخیص نفوذ آینده را داشته باشد.

بررسی و ارزیابی رویکردهای تشخیص نفوذ بر مبنای سیستم ایمنی مصنوعی Keywords:

بررسی و ارزیابی رویکردهای تشخیص نفوذ بر مبنای سیستم ایمنی مصنوعی authors

حسین شیرازی

دانشیار، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی برق و کامپیوتر

احسان فرزادنیا

دانشجوی کارشناسی ارشد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی برق و کامپیوتر

علیرضا نوروزی

استادیار، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی برق و کامپیوتر