Free vibration analysis of multi-cracked micro beams based on Modified Couple Stress Theory
Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 549
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TAVA-4-2_006
تاریخ نمایه سازی: 17 تیر 1398
Abstract:
In this article, the size effect on the dynamic behavior of a simply supported multi-cracked microbeam is studied based on the Modified Couple Stress Theory (MCST). At first, based on MCST, the equivalent torsional stiffness spring for every open edge crack at its location is calculated; in this regard, the Stress Intensity Factor (SIF) is also considered for all open edge cracks. Hamilton’s principle has been used in order to achieve the governing equations of motion of the system and associated boundary conditions are derived based on MCST. Then the natural frequencies of multi-cracked microbeamare analytically determined. After that, the Numerical solutions have been presented for the microbeam with two open edge cracks. Finally, the variation of the first three natural frequencies of the system is investigated versus different values of the depth and the location of two cracks and the material length scale parameter. The obtained results express that the natural frequencies of the system increase by increasing the material length scale parameter and decrease by moving away from the simply supported of the beam and node points, in addition to increasing the number of cracks and cracks depth.
Keywords:
Authors
Abbas Rahi
Assistant Professor, Mechanical & Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran
Hamed Petoft
Ph.D. Candidate, Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :