An insight into effect of surface functional groups on reactivity of Sphalerite (110) surface with Xanthate collector: a DFT study

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 313

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMAE-9-2_013

تاریخ نمایه سازی: 18 تیر 1398

Abstract:

The reactivity of the protonated and hydroxylated sphalerite (1 1 0) surface with xanthate was simulated using the density functional theory (DFT). The difference between the energy of the lowest unoccupied molecular orbital of the sphalerite surface and the energy of the highest occupied molecular orbital of xanthate (  was used to compare the reaction capability of xanthate with fresh and functionalized surfaces. The Mulliken atomic charge analysis was used to provide an in-depth insight into the effects of –H+ and –OH- groups on the reactivity of Zn atoms at the sphalerite surface. The  values for different systems showed that the protonated surfaces exposed a higher reactivity with xanthate than the fresh and hydroxylated surfaces. The results of the Mulliken atomic charge analysis demonstrated that after the formation of –H+ and –OH- contained groups on the sphalerite surface, the surface atoms found a new charge due to the reduction and oxidation mechanism. In addition, the results obtained revealed that the electrophilicity of Zn atoms after the ion adsorption could be considered as a key factor in the reactivity of the sphalerite surface with xanthate. The DFT-based calculations also showed that different alkyl groups of xanthate had no significant influence on the reactivity of their head groups. The findings of this research work provided insights into the reactions of the sphalerite surface with xanthate.

Authors

M. Mohseni

Department of Mining Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, Tehran, Iran

M. Abdollahy

Department of Mining Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, Tehran, Iran

R. Poursalehi

Department of Materials Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, Tehran, Iran

M. R. Khalesi

Department of Mining Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, Tehran, Iran