ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

Year: 1398
COI: JR_SCMA-14-1_015
Language: EnglishView: 254
This Paper With 13 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 13 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Mohammad Shahriari - Department of Mathematics, Faculty of Science, University of Maragheh, P.O. Box ۵۵۱۳۶-۵۵۳, Maragheh, Iran.
Reza Akbari - Department of Mathematical Sciences, Payame Noor University, Iran.
Mostafa Fallahi - Department of Mathematics, Faculty of Science, University of Maragheh, P.O. Box ۵۵۱۳۶-۵۵۳, Maragheh, Iran.

Abstract:

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfunctions at an interior point and  parts of one or two  sets of eigenvalues.

Keywords:

Paper COI Code

This Paper COI Code is JR_SCMA-14-1_015. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/892029/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Shahriari, Mohammad and Akbari, Reza and Fallahi, Mostafa,1398,Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions,https://civilica.com/doc/892029

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • R.Kh. Amirov, On Sturm--Liouville operators with discontinuity conditions inside an ...
  • R.Kh. Amirov, On system of Dirac differential equations with discontinuity ...
  • G. Freiling and V.A. Yurko, Inverse Sturm--Liouville problems and their ...
  • M.G. Gasymov and B.M. Levitan, The inverse problem for a ...
  • Y. Guo, G. Wei, and R. Yao, Inverse problem for ...
  • O. Hald, Discontinuous inverse eigenvalue problem, Commun. Pure. Appl. Math., ...
  • H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with ...
  • M. Kobayashi, A uniqueness proof for discontinuous inverse Sturm-Liouville problems ...
  • B.J. Levin, Distribution of zeros of entire functions, AMS. Transl. ...
  • B.Ya. Levin, Entire functions, MGU, Moscow, 1971. ...
  • B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac operators, Kluwer ...
  • K. Mochizuki and I. Trooshin, Inverse problem for interior spectral ...
  • K. Mochizuki and I. Trooshin, Inverse problem for interior spectral ...
  • K. Mochizuki and I. Trooshin, Inverse problem for interior spectral ...
  • M. Shahriari, A.J. Akbarfam, and G. Teschl, Uniqueness for inverse ...
  • Z. Wei, Y. Guo, and G. Wei, Incomplete inverse spectral ...
  • C. Willis, Inverse Sturm-Liouville problems with two discontinuities, Inverse Probl., ...
  • C.F. Yang, Hochstadt-Lieberman theorem for Dirac operator with eigenparameter dependent ...
  • V. Yurko, Integral transforms connected with discontinuous boundary value problems, ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 1,415
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support