The use of topological indices to predict thermodynamic properties of amino acids derivatives
Publish place: Iranian Chemical Communication، Vol: 7، Issue: 3
Publish Year: 1397
Type: Journal paper
Language: English
View: 450
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_ICC-7-3_008
Index date: 14 July 2019
The use of topological indices to predict thermodynamic properties of amino acids derivatives abstract
In the present investigation the applicability of various topological indices are tested for the QSPR study on 80 amino acids derivatives. Relationship between the Randic (1X), Balaban (J), Szeged (Sz), Harary (H), Wiener (W), Hyper-Wiener (WW) and Wiener Polarity (WP) indices to the thermodynamic Properties such as thermal energy Eth (J/mol) and heat capacity (CV J/mol. K) of amino acids is represented. The thermodynamic properties are taken from HF level using the ab initio 6-31G basis sets from the program package Gaussian 98. We have used Multiple Linear Regression (MLR) techniques and followed back ward regression analysis for obtaining properties. By analyzing the correlation between the indices in suitable models, the most suitable indicators for modeling properties were determined. The predictive powers of the models were discussed using leave-one-out (LOO) cross-validation. The obtained results show that combining of the two descriptors (J, 1X) could be used successfully for modeling and predicting the heat capacity (CV), and thermal energy (Eth) of amino acids derivatives.
The use of topological indices to predict thermodynamic properties of amino acids derivatives Keywords:
The use of topological indices to predict thermodynamic properties of amino acids derivatives authors
Afsaneh Safari
Department of chemistry Arak Branch, Islamic Azad University
Fatemeh Shafiei
Department of Chemistry, Arak Branch, Islamic Azad University, P.O. Box ۳۸۱۳۵-۵۶۷, Arak, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :