Plackett–Burman experimental design for the removal of diazinon pesticide from aqueous system by magnetic bentonite nanocomposites
Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 339
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ARWW-6-1_007
تاریخ نمایه سازی: 24 شهریور 1398
Abstract:
The present study demonstrates the effective removal of diazinon pesticide from aqueous solutions by means of magnetic bentonite nanocomposite. The product was characterized by advanced techniques like scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and infrared spectroscopy (IR). Operational parameters affecting the removal efficiency, including the pH level, contact time, agitation speed and adsorbent dose, were screened through Plackett-Burmann design to determine the significant factors. Then, significant parameters, including the pH level and adsorbent dose, were further optimized using Central Composite design to predict optimum removal conditions. Under the optimal conditions, the maximum adsorption capacity of the nanocomposite for diazinon was found to be 92.50 %. The kinetic of pesticide sorption and equilibrium studies were performed. The experimental data could be well fitted to the Freundlich model. The magnetic bentonite nanocomposite was successfully applied for the uptake of diazinon from industrial wastewater and groundwater samples and separated easily by means of magnetic separation.
Keywords:
Authors
Somayeh Heydari
Department of Chemistry, Faculty of Agriculture and Animal Science, Torbat-e jam University, Torbat-e jam, Iran.
Leili Zare
Department of Chemistry, Faculty of Agriculture and Animal Science, Torbat-e jam University, Torbat-e jam, Iran.
Hamideh Ghiassi
Department of Chemistry, Faculty of Agriculture and Animal Science, Torbat-e jam University, Torbat-e jam, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :