Multi-Frame Vectors for Unitary Systems in Hilbert $C^{*}$-modules

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 356

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_SCMA-15-1_001

تاریخ نمایه سازی: 22 مهر 1398

Abstract:

In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective operator is replaced by unitary and invertible operators, respectively. Moreover, we show that new multi-frames (resp. multi-Riesz bases) can be obtained as linear combinations of known ones using coefficients which are operators in a certain class.

Authors

Mohammad Mahmoudieh

School of Mathematics and computer Science, Damghan University, Damghan, Iran.

Hessam Hosseinnezhad

School of Mathematics and computer Science, Damghan University, Damghan, Iran.

Gholamreza Abbaspour Tabadkan

School of Mathematics and computer Science, Damghan University, Damghan, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • S.T. Ali, J.P. Antoine, and J.P. Gazeau, Continuous frames in ...
  • B.K. Alpert, A class of bases in $L^2$ for the ...
  • L. Arambasic, On frames for countably generated Hilbert $C^*$-modules, Proc. ...
  • D. Bakic and B. Guljas, Hilbert $C^*$-modules over $C^*$-algebras of ...
  • P. Balazs, M. D orfler, N. Holighaus, F. Jaillet, and ...
  • P. Balazs, B. Laback, G. Eckel, and W.A. Deutsch, Time-frequency ...
  • J.J. Benedetto and S. Li, The theory of multiresolution analysis ...
  • H. B olcskei, F. Hlawatsch, and H.G. Feichtinger, Frame-theoretic analysis ...
  • P. Casazza and G. Kutyniok, Finite Frames: Theory And Applications, ...
  • P.G. Casazza, G. Kutyniok, and S. Li, Fusion frames and ...
  • O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, ...
  • O. Christensen and D. Stoeva, $p$-frames in separable Banach spaces, ...
  • N. Cotfas and J.P. Gazeau, Finite tight frames and some ...
  • S. Dahlke, M. Fornasier, and T. Raasch, Adaptive Frame Methods ...
  • X. Dai and D.R. Larson, Wandering vectors for unitary systems ...
  • I. Daubechies, Ten lectures on wavelet, SIAM, Philadelphia, 27, 1992. ...
  • I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, ...
  • M. Dorfler and H. Feichtinger, Quilted Gabor families I: Reduced ...
  • R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier ...
  • M. Frank and D. Larson, Frames in Hilbert $C^*$-modules and ...
  • D. Gabor, Theory of communication. Part 1: The analysis of ...
  • X. Guo, Multi-frame vectors for unitary systems, Indian J. Pure ...
  • D. Han, Tight frame approximation for multi-frames and supper-frames, J. ...
  • C. Heil, A Basis Theory Primer, expanded edition. Springer Science ...
  • L. Herve, Multi-resolution analysis of multiplicity d: applications to dyadic ...
  • W. Jing, Frames in Hilbert $C^*$-modules, Ph.D. Thesis, University of ...
  • E.C. Lance, Unitary operators on Hilbert $C^*$-modules, Bull. Lond. Math. ...
  • E.C. Lance, Hilbert $C^*$–modules: A Toolkit for Operator Algebraists, Cambridge ...
  • S.Q. Liu, H.L. Jin, X.O. Tang, H.Q. Lu and S.D. ...
  • P. Majdak, P. Balazs, W. Kreuzer, and M. Dorfler, A ...
  • V.M. Manuilov and E.V. Troitsky, Hilbert $C^*$–modules, Amer. Math. Soc., ...
  • R. Stevenson, Adaptive solution of operator equations using wavelet frames, ...
  • نمایش کامل مراجع