Economic Growth Prediction Using Optimized Support Vector Machines
Publish place: 4th International Congress of Developing Agriculture, Natural Resources, Environment and Tourism of Iran
Publish Year: 1398
نوع سند: مقاله کنفرانسی
زبان: English
View: 480
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICSDA04_0844
تاریخ نمایه سازی: 4 دی 1398
Abstract:
Without a doubt the GDP1 is one of the substantial indicators in evaluation of every nation’seconomic growth. There are different types of econometric parameters that affect on the behavior ofGDP and make it excessively non-linear and high- stochastic. Under such circumstances, experts arebeing tried in the development of techniques in order to define such a complex phenomenon. The mainobjective of this research is to propose a hybrid model to predict the future GDP of Turkey. Theproposed model consists of three stages. In the first stage, after lag selection, the most efficientfeatures are selected using SRA2. Afterward, these variables are used in order to develop proposedmodel, in which the model uses support vector machines that the parameters of which are tuned byGA3. Finally, results demonstrated that accuracy of the proposed hybrid model is highly promising thanthe ANN4 and ANFIS5 models.
Keywords:
Authors
Elmira Emsia
Assistant Professor of Economics, Department of Accounting, Damghan Branch, Islamic Azad University, Damghan, Iran