An Efficient and Robust Saturation Pressure Calculation Algorithm for Petroleum Reservoir Fluids Using Neural Network

Publish Year: 1389
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,298

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

IOGPC17_010

تاریخ نمایه سازی: 3 آبان 1389

Abstract:

Saturation pressure is one of the key parameters in hydrocarbon reservoir engineering computations such as material balance and reservoir simulation. Empirical correlations (explicit methods) or equation of states (iterative methods ) are used to predict the fluid propertis. the accuracy of the mentioned computations will depend on the accuracy of the applied method. one of the greatest issues in calculation of saturation pressure , e.g.bubble poing pressure (Pb) , using EOS and iterative methods , is initial value to start the iteration . In thies work a feed forward multilayer neural network model is introduced to predict an initial value for bubble-point pressure in order to start the iterative methods. the model was developed using 411 published data from middle east and canada fields. 76 percent of data was used to train network 10 percent to cross validate of developed relationship during training process, 14 percent to test and trend analysis of the model. the results show that the model predicts a bubble -point pressure very close to exact one which can be used as an initial value in iterative methods . the proposed model provides prediction of bubble -point with relative average error of 0.532% absolute average error of 3.273%, a standard deviation of 3.417% and correlation coefficient of 0.999989.

Keywords:

saturation pressure , petroleum fluids , equation of state and neural network

Authors

mehdi assareh

research institute of petroleum industry RIPI

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ahmed T, "Hydrocarbon Phase Behavior, Gulf Publishing Co., 1st Edition, ...
  • Caudill M., and C. Butler, _ 'Understanding Neural Networks: Computer ...
  • and 2, Cambridge, MA: The MIT Press, 1992. ...
  • Danesh A.: _ and Phase Behavior of Petroleum Reservoir Fluids", ...
  • E.A. Osman, O.A. Abde I-Wahhab, and M.A. A1-Marhoun: "Prediction of ...
  • Hagan M.T., et al, "Neural Network Design", Boston, MA: PWS ...
  • I.A. Khan, K. McAndrews, J.P. Jose, A.K.M. Jamaluddin, and H.B. ...
  • Lippmann R.P.: "An introduction o computing with neural networks. ASSP ...
  • M.F. Briones, G.A. Rojas, J.A, Moreno, O. Hidalgo: _ _ ...
  • Masters T., "Advanced Algorithms for Neural Networks: a C++ Sourcebook", ...
  • Masters T., "Neural, Novel & Hybrid Algorithms for Time Series ...
  • Meisam Karbalaee Akbari, Farhang Jalali Farahani: "Dewpoint Pressure Estimation of ...
  • Michelsen M L: "Calculation of phase envelopes and critical points ...
  • Michelsen M.L: _ Isothermal Flash Problem, Part I: Stability, Fluid ...
  • New Two Constant Equation of States", Ind. Eng. Chem. A:ه ...
  • Prausnitz J.M., et al: "Molecular Thermodynam ics of Fluid Phase ...
  • Ridha B. Gharbi, Adel M. Elsharkawy: "Universal Neural Network Based ...
  • Xu D. H., et al: _ accelerated successive substitution method ...
  • نمایش کامل مراجع